

OCS001- COMPUTER SCIENCE I

Credit Hours: 3-4 Semester Hours

Pre-Requisite: Fundamentals of Computing or Proficiency

Related TAG: Computer Science

Student Learning Outcomes marked with an asterisk (*) are considered
essential and must be covered:

Learning outcomes 1. Ability to apply computing theories and use basic software
applications to solve problems.

Learning outcomes 2. Design solutions focused algorithms using pseudocode
and/or flowchart to solve programming problems. *

Learning outcome 3. Identify the data types available and apply this knowledge to
declare and use variables and constants. *

Learning outcome 4. Demonstrate the ability to use operators to create logical
expressions, mathematical calculations, and assignment statements. *

Learning outcome 5. Build conditional logic using Boolean expressions and decision
structures. *

Learning outcomes 6. Construct loops to implement iterative logic. *

Learning outcomes 7. Ability to create and effectively use subroutines
(methods/functions/procedures). *

Learning outcomes 8. Use a data structure, such as an array, to store and
manipulate a collection of related elements. *

Learning outcomes 9: Properly use error checking or proper testing of program to
debug, validate data, and resolve errors. *

Computer Science Transfer Assurance Guide: Computer Science I
TAG Course- Proposed OCS001, 2021

OCS002- COMPUTER SCIENCE II

Credit Hours: 3-4 Semester Hours

Related TAG: Computer Science

Student Learning Outcomes marked with an asterisk (*) are considered
essential and must be covered:

Learning outcome 1. Explain the core principles of object-oriented programming. *

Learning outcome 2. Demonstrate the ability to create user-defined types (classes)
and instantiate programming objects. *

Learning outcome 3. Create object-oriented solutions that use class inheritance
to create subclasses. *

Learning outcomes 4. Utilize advanced object-oriented techniques, such as abstract
classes and interfaces. *

Learning outcomes 5. Design solutions implementing simple data structures such as
a linked list or queue, to store and manage a collection of values. *

Learning outcomes 6. Implement simple search and sort algorithms and explain the
differences in their time complexities. *

Learning outcome 7. Demonstrate the ability to evaluate algorithms, to select from a
range of possible options and to implement the algorithm in a particular context. *

Learning outcomes 8. Analyze and apply recursive programming techniques. *

Computer Science Transfer Assurance Guide: Computer Science II
TAG Course- Proposed OCS002, 2021

